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Testing for differentially expressed genetic
pathways with single-subject N-of-1 data
in the presence of inter-gene correlation
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Abstract

Modern precision medicine increasingly relies on molecular data analytics, wherein development of interpretable single-

subject (‘‘N-of-1’’) signals is a challenging goal. A previously developed global framework, N-of-1-pathways, employs

single-subject gene expression data to identify differentially expressed gene set pathways in an individual patient.

Unfortunately, the limited amount of data within the single-subject, N-of-1 setting makes construction of suitable

statistical inferences for identifying differentially expressed gene set pathways difficult, especially when non-trivial

inter-gene correlation is present. We propose a method that exploits external information on gene expression

correlations to cluster positively co-expressed genes within pathways, then assesses differential expression across the

clusters within a pathway. A simulation study illustrates that the cluster-based approach exhibits satisfactory false-positive

error control and reasonable power to detect differentially expressed gene set pathways. An example with a single N-of-

1 patient’s triple negative breast cancer data illustrates use of the methodology.

Keywords

Gene expression data, RNA-seq, gene set, inter-gene correlation, N-of-1, single-subject inference, precision medicine,

triple negative breast cancer, affinity propagation clustering, exemplar learning

1 Introduction

1.1 Background

Modern precision medicine increasingly relies on molecular data analytics, where standard approaches accumulate
large amounts of molecular data from multiple patients.1,2 Within this context, an experiential paradigm that has
garnered recent attention is development of interpretable single-subject signals to truly focus on the individual
patient.3,4 A novel approach to generating single-subject information is known as the N-of-1 trial,5 where the
individual patient is the sole source/unit of observation and any statistical descriptions and inferences are intended
to relate only to that patient.

While the broad N-of-1 strategy possesses obvious impact for advancing personalized medicine, in certain
settings, the approach can exhibit greatly expanded capabilities. Consider, e.g., a molecular N-of-1 analysis
where data on a gene’s messenger RNA (mRNA) expression are sampled from a patient’s diseased organ or
tissue. Rather than study expression levels across the patient’s entire transcriptome en masse, we previously
proposed a framework, called N-of-1-pathways, that applies the N-of-1 strategy to pertinent gene pathways, i.e.
to preassigned collections of gene sets within which the genes are assumed to have associated mechanisms or
functions.6–8 Gene set (pathway) membership is typically defined using curated knowledgebases; here, we employ
the gene ontology (GO)9 knowledgebase and its corresponding GO-biological processes (GO-BP) gene sets.
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The aim in our previous works6–8 was to improve and enhance mechanism-anchored, single-subject, gene
expression analysis. In practice, the tactic assumes that the mRNA expressions are collected across all
pathways of interest from a single patient under two different paired conditions—e.g. baseline and case,
unaffected tissue vs. tumor tissue, before and after treatment, etc. The goal is then to quantify and test for
differential pathway expression for that patient using the data derived under the two paired transcriptomes
from those different conditions. The framework represents a substantial opportunity for a clinically actionable
and economically efficient approach to personalized medicine.10

1.2 Breast cancer example

To fix the concepts and also motivate our methodological development, consider the following example. Table 1
gives mRNA expression data from a female subject exhibiting triple negative breast cancer, or TNBC. (TNBC is
often more difficult to treat than other breast cancers and thus demands a poorer prognosis; it also
disproportionately affects minorities.11) The table presents matched normal-tumor pairs of mRNA expression
outcomes from a sample of the patient’s healthy breast tissue (left column) and of her cancerous breast tissue
(middle column) in a specific gene pathway, renal system process involved in regulation of systemic arterial blood
pressure (GO:0003071), made up of 15 individual genes. The data were taken from a large collection of RNA-seq
data sets obtained from the Cancer Genome Atlas (TCGA; see Acknowledgments). The collection yielded 20,051
mRNA counts, as mapped to HUGO gene symbols12 for both normal and tumor samples derived from this
patient. Following standard practice, a stabilizing transformation was applied by adding 1 to each normalized
count and then taking a base-2 logarithm.

Of interest here is whether or not the paired observations in this pathway exhibit significant differential
expression between normal and tumor tissues in this single patient. It is of further interest to also repeat the
calculations across the larger collection of all pathways under study. (A total of 3411 pathways are available with
this patient’s data; see Section 4.1. As noted above, we define the pathways using the GO9 knowledgebase via GO-
BP gene sets.) By isolating significant, differentially expressed pathways (DEPs) for this patient, the N-of-1-
pathways approach offers a glimpse into the individual, dysregulated, cellular mechanisms between her tumor
and normal breast tissue control.

1.3 Identifying DEPs

Generically, for this N-of-1-pathways setting, we assume the matched-pair data are collected as expression levels
from the gth gene ð g ¼ 1, . . . ,GÞ in some pre-specified pathway with G genes. Denote each gene’s (log2-

Table 1. Paired mRNA (log2) expression data in pathway GO:0003071 (renal system process involved in

regulation of systemic arterial blood pressure), from a breast cancer patient.

Gene Case/cancer expression Normal tissue expression Difference

CYP4A11 0.00 3.71 �3.71

AGTR1 6.13 7.86 �1.73

OR51E2 2.90 1.54 1.36

CYP11B2 0.00 0.00 0.00

PTPRO 3.72 6.22 �2.50

CYP4F2 0.00 0.40 �0.40

AGT 8.40 7.89 0.52

PCSK5 6.68 6.92 �0.25

PDGFB 8.82 9.56 �0.74

F2RL1 8.25 7.91 0.35

EMP2 12.54 12.50 0.04

GAS6 11.89 12.35 �0.47

CYP4F12 1.43 4.72 �3.29

F2R 9.15 9.77 �0.61

SERPINF2 6.38 9.57 �3.19

Note: See text for details.
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transformed) expression under the baseline condition as Bg and its matched case expression as Cg. The paired
differences become Dg ¼ Cg � Bg, with sample mean �D and standard error s �D ¼ sD=

ffiffiffiffi
G
p

, where sD is the sample
standard deviation of the Dgs.

The sample mean �D of the difference in log-expression between case and baseline conditions is a natural statistic
to use for quantifying any observed dysregulation in a given pathway. We have found that for sufficiently large
pathways, the sampling distribution of �D presents as roughly symmetric and bell-shaped, consistent with standard
central limit results on sums of random variables.13 Thus, one might consider testing for no difference between
baseline and case conditions using the differences Dg and applying the usual paired, G – 1 d.f. t-test14 via the test
statistic t ¼ �D=ðsD=

ffiffiffiffi
G
p
Þ. If questions exist regarding the t-test’s reliance on normal (Gaussian) distribution

sampling, appeal can be made instead to its well-established nonparametric analog, the Wilcoxon signed-rank
test for two-sample matched-pairs data.14 Applied over many different, preselected pathways, corrections for
multiple false discoveries to these simple per-pathway inferences may also be included.15

Additional complexities occur with matched-pair RNA-seq N-of-1 data, however. It is important to recognize
that expressions across genes within a given pathway are likely to be both heterogeneous and, more critically,
correlated. When testing for differences between the two conditions, inter-gene heterogeneity may not
detrimentally affect the null distribution of the test statistic; however, experience with cohort-based gene set
testing has shown that inter-gene correlation is non-trivial and should be accounted for in order to maintain
the nominal operating characteristics of any inferential procedure.16,17 Essentially, both the naı̈ve t-test and the
signed-rank test assume independence among the pathway’s gene expressions and as we will see below, in the
presence of non-zero inter-gene correlation, they generally fail to contain the test’s false-positive error rate at
nominal levels.

Indeed, an unanswered problem when testing for DEPs with single-patient N-of-1 data is how to incorporate
non-zero inter-gene correlation(s) from a single N-of-1 sample of G gene expressions. Herein, we propose use of
external information to identify clusters of correlated genes within a pathway, and then manipulate that
information to build a correlation-adjusted, cluster-based test statistic for assessing differential N-of-1
expression in that pathway. (Mention of external information naturally leads one to consider some form of
hierarchical Bayesian model. While we do not dismiss this possibility, it is not our goal in the methods we
present below to employ a Bayesian approach. Our attention focuses instead on developing frequentist
strategies for the DEP testing scenario.) We begin in Section 2 with a description of our model and clustering
strategy, along with a suggested algorithm for its implementation. Section 3 follows with a short simulation study
of the method’s operating characteristics, with focus on its performance in the presence of inter-gene correlation.
Section 4 illustrates the approach by returning to the TNBC data from Section 1.2, while Section 5 ends with an
overview and discussion. Note that all calculations we present below are performed in the R statistical
programming environment.18

2 Methodological strategy and clustering algorithm

Our motivating goal is to identify DEPs within a single N-of-1 subject while recognizing that the genes’ expressions
within a pathway are likely correlated. We restrict attention in this section to a single target pathway, studied
under two paired conditions—generically listed as ‘‘Case’’ and ‘‘Baseline’’—as is typical in N-of-1-pathways
applications. (Consideration of more than two conditions is certainly possible, but we have not seen any
instances of such in practice.)

Our experience indicates that without some form of external information on the within-pathway correlation(s),
it is difficult to develop a test of differential pathway expression for a single, N-of-1 sample. Incorporating external
gene expression data in testing procedures for pathway dysregulation in a single sample is rare, but not
unexplored.19 To address the issue, we appeal to the growing amount of transcriptomic information being
uploaded to modern data storehouses/knowledgebases, and in particular aim to extract from these sources
relevant biological-context input to aid in the test’s construction. Our approach has a bioinformatic flavor, and
it attempts to turn the problem on its head: rather than allow the inter-gene correlations to stymie DEP
assessment, we use the external correlation information to aggregate non-negatively correlated genes (assumed
strictly co-expressed, not anti-expressed) into correlated clusters within a pathway. We propose the following

strategy: (a) identify an existing knowledgebase from which all
G

2

� �
inter-gene correlations can be determined/

calculated for the G genes within our target gene set (pathway), (b) apply an existing clustering algorithm to group
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the G genes into clusters based on the external inter-gene correlation data, then (c) incorporate the derived cluster
information into a test for differential expression. The latter effort is facilitated by a useful cluster-adjusted t-test
given by Williams.20 The following sub-sections provide details for each step.

2.1 Correlation-based clustering of genes within a pathway

To define gene clusters within a pathway, we devised a two-stage algorithm: (i) estimate inter-gene correlation via
independent source(s), then (ii) conduct unsupervised clustering of those genes using the external correlations to
define gene-gene similarity.

In the first stage, we identify biological context-relevant mRNA expression data from some external
knowledgebase(s). Many different possibilities exist and users can choose any external database that suits their
needs. Some caution may be necessary; however, many sources provide a wide selection of gene-pair correlations,
derived from multiple inputs. When these are collected to define inter-gene correlations for the G genes within a
specific pathway, the consequent correlation matrix need not be positive definite, as the original observations likely
did not come from a single, coherent sample. This can lead to computational (and interpretational) problems. To
avoid this concern, we recommend use where possible of knowledgebases that contain multiple gene-expression
samples from independent individuals. We give an example of such in Section 4.2.

Thus, suppose that mRNA expression measurements from P independent patients are taken on the G genes
under study. Form the corresponding matrix of (log2-transformed) gene expression data XG�P ¼ fxihg and use it to
compute the usual Pearson product-moment correlation coefficients

rih ¼
1

P� 1

XP
‘¼1

xi‘ � �xi
si

� �
xh‘ � �xh

sh

� �
ð1Þ

for each ði, hÞth pair of the G genes ði 6¼ hÞ, where �xi, si, �xh, and sh are the sample means and standard deviations
across patients for the ith and hth genes, respectively. For convention, we define any gene with zero standard
deviation (likely to be caused by a gene with null expression across all samples) as uncorrelated with every
other gene.

2.2 Gene clustering via affinity propagation

We employ the information from the externally derived inter-gene correlations rih to define a set of gene clusters
for our target pathway. To perform the clustering, we favor use of affinity propagation (AP)21 although this
warrants further discussion, see Section 5.2. AP clustering exhibits similarities with the well-known k-means
clustering approach: it forms clusters around multiple center points, called exemplars, that are assessed for
cluster similarity in an iterative fashion; Frey and Dueck21 gave full details. Our strategy shares features with a
widely used framework known as correlation network analysis, whose applications in biology include clustering of
genes into densely connected sets.22

To cluster via AP, we require a similarity metric sð gi, ghÞ to define the suitability of a data point (gene) gh to
serve as the cluster exemplar for another data point (gene) gi ðh 6¼ iÞ. Since our goal is to cluster on correlations, we
use sð gi, ghÞ ¼ rih, i.e. the recorded correlation between genes gi and gh in the external knowledgebase from Section
2.1. Rather than pre-specify the number of clusters, say, m, AP allows for as many (or as few) clusters as the
similarity values encourage: higher input similarities increase the likelihood that a gene serves as a cluster
exemplar. To add a level of performance stability, however, we recommend that each final cluster should
contain at least four genes, unless AP requires smaller cluster sizes in order to converge. We impose that
requirement here.

We enlist the R package apcluster23 to implement the AP algorithm. We generally accept most of the package
defaults, although we manipulate one selected ‘‘input preference’’ parameter, q: assuming all genes are equally
valid candidates for the cluster exemplars, the program uses the qth sample similarity quantile as the shared input
preference that a gene is chosen as such an exemplar. Informally speaking, this input preference is the propensity
of a gene to become an exemplar for itself, i.e. q ¼ sð gi, giÞ. (See the apcluster documentation at https://cran.r-
project.org/package¼apcluster for further details.) In effect, q acts as a tuning parameter that affects the number of
clusters in the final AP solution: q¼ 0 tends to produce fewer numbers of clusters, while q¼ 1 tends towards
increasing numbers of clusters. The apcluster default is the median at q ¼ 1

2.
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To select the tuning parameter q, we appeal to the external correlation data. We begin with a definition for the
separation distance between any two points (genes), where greater ‘‘distance’’ implies poorer rationale for
assigning two genes to the same cluster. Here, we take the distance metric as simple Pearson distance24 scaled
to the unit interval: �ð gi, ghÞ ¼

1
2 ð1� rihÞ. For a given input q, suppose AP has converged to a solution of mq

clusters, with nj � 4 genes assigned to each jth cluster among the G ¼
Pmq

j¼1 nj genes in the target pathway. Denote
the corresponding collection of clusters as fC1, . . . , Cmq

g. To keep the calculations manageable, we vary q over some
range of values such as q ¼ 0, 0:05, 0:10, . . . , 1:0, and borrow from methods of partitioned cluster analysis25: first,
calculate the cumulative within-cluster variation

!qðC1, . . . , Cmq
Þ ¼

Xmq

j¼1

X
i2Cj
h2Cj

�ð gi, ghÞ ð2Þ

and then the corresponding between-cluster variation

�qðC1, . . . , Cmq
Þ ¼

Xmq

j¼1

X
i2Cj
h 62Cj

�ð gi, ghÞ ð3Þ

A popular measure for exploring the quality of different clustering solutions is the ‘‘pseudo-F’’ statistic26

FqðC1, . . . , Cmq
Þ ¼
ð�q � !qÞ=ðmq � 1Þ

!q=ðG�mqÞ
ð4Þ

where �q ¼ !q þ �q. Since it mimics the F-ratio from an analysis of variance, large values of equation (4) suggest
higher pertinence for the given cluster assignment, or translated here, for the input value of the corresponding q.
Thus, we maximize equation (4) to help select an operable value for q.

With all these components in place, our correlation-based clustering algorithm takes the following steps:

Step 1. Set q¼ 0, qstep ¼ 0:05, and define min.clust.size¼ 4.
Step 2. Cluster the G genes within the target pathway using AP, supplying the similarity matrix of correlations,

R ¼ frihg, and current input preference q. To begin, start with q¼ 0.
Step 3. Compute the pseudo-F statistic from equation (4) for the given cluster assignment.
Step 4. Check that the min.clust.size restriction was met. If so, increment q by qstep ¼ 0:05 and repeat Steps 2–

4. Find the largest value of Fq and select that cluster solution; let m be the corresponding number of clusters.
Step 5. If the min.clust.size restriction fails, or if q¼ 1, then select the cluster solution from the largest value of

Fq where min.clust.size is met or q¼ 0. Let m be the corresponding number of clusters.
Step 6. Return the gene list G with cluster assignments fC1, . . . , Cmg.

2.3 Assessing pathway differential expression

Given the external, correlation-based cluster assignments from Section 2.2, we next return to the current N-of-1
data set of gene expressions from our single subject. Let Djk¼Cjk – Bjk be the kth gene-wise case-to-baseline
difference (k ¼ 1, 2, . . . , nj) in the jth cluster (j ¼ 1, 2, . . . ,m) from a total of G ¼

P
j nj genes in the target pathway.

Also, let Dþþ ¼
P

j

P
k Djk be the grand sum, Djþ ¼

P
k Djk be the jth cluster sum, �D ¼

P
j Djþ=m be the mean

difference across clusters, and ��D ¼ Dþþ=G be the grand mean. Lastly, take S2
D as the sample variance

1
m�1

P
j ðDjþ � �DÞ2 across clusters. (If desired, these expressions translate in a straightforward fashion when pre-

determined, cluster-specific weights, wj, are available to differentially weight the clusters, e.g. use
�Dw ¼

P
j wjDjþ=

P
j wj, etc.)

We take the parameter �DEP ¼ Eð ��DÞ to represent the true magnitude of pathway differential expression. The
statistical hypotheses of interest are

H0 : �DEP ¼ 0
Ha : �DEP 6¼ 0

ð5Þ
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Our aim is to employ the externally derived cluster assignments to construct a test statistic from which we can
assess if our N-of-1 data can identify the target pathway as a significant DEP. The grand mean D serves as an
obvious starting point, since it measures the extent of differential expression in the pathway. We prefer, however,
to base our test statistic’s construction on the mean cluster difference �D: although less interpretable than D,
operating with �D provides for some useful computational simplification, e.g. testing H0 in equation (5) reduces
to calculations only involving �D.

To estimate Var½ �D�, we turn to a robust, unbiased variance estimator offered by Williams20 for cluster-
correlated data. Given externally defined clusters fC1, . . . , Cmg, Williams showed that under our notation, the
variance of the grand sum can be estimated as

dVar½Dþþ� ¼ m

m� 1

Xm
j¼1

ðDj � �DÞ2 ð6Þ

where �D ¼
P

j Djþ=m was defined above. Notice that equation (6) is simply dVar½Dþþ� ¼ mS2
D. With it, the

standard error of �D becomes SD=
ffiffiffiffi
m
p

.
Now, suppose under H0 that the within-pathway cluster sums are distributed as Djþ � Nð0, �2Þ, with variances

�2 taken as constant across clusters. The use of a stabilizing log-transform on the original read counts supports the
homogeneous-variance normal/Gaussian assumption here, at least approximately, when clusters are sufficiently
large and roughly equal in size.27 The hyperbolic arc-sine can provide an even-more-stable transformation with
read counts such as these, although the improved stability it provides may not be sufficient to support its
additional complexity.28 We do not generally see it applied to RNA-seq read counts in practice.

Conditional on the external definitions for the clusters, it is straightforward then to show that the t-statistic

T ¼
�D

SD=
ffiffiffiffi
m
p ð7Þ

is distributed as T � tðm� 1Þ under H0. A (two-sided) p-value for testing H0 against Ha is simply
p ¼ 2P½tðm� 1Þ � jTj�. Reject H0 and report the target pathway as differentially expressed when p is smaller
than some pre-specified �-level.

3 Simulation study

3.1 Simulation design and generation

The test statistic for DEP assessment constructed in Section 2.3 relies on approximating arguments to be valid with
N-of-1-pathways gene expression data. To investigate the performance of our test methodology in practice, we
conducted a series of Monte Carlo evaluations.

We examined how four different inputs affect the test’s operating characteristics: (1) pathway size; (2)
proportion, say, �, of DEGs within the pathway; (3) the fold-change increase, say,  , in mean differential
expression from the Case to the Baseline sample; and (4) the inter-gene dependence structure as quantified by a
within-pathway correlation matrix R. We explain each of these components in detail below.

Our focal setting for building the simulation configurations is the pathway size G. We studied five different sizes:
G ¼ 15, 30, 50, 100, 200, 400. In order to represent true practical settings, we associated each different pathway size
with an existing pathway annotation from the GO-BP knowledgebase9 (downloaded 1 September 2015). We
focused on matched-pair breast cancer outcomes, following on our example from Section 1.2. We were able to
identify 110 patients with RNA-sequencing from TCGA’s breast adenocarcinoma (BRCA) database and modified
existing GO-BP gene set definitions to include gene symbols that were measured in their BRCA data sets (20,501
genes for the 110 subjects’ matched pairs; downloaded 27 Jul 2016). This resulted in 634 distinct mRNAs being
filtered out from GO-BP (11,530 down to 10,896 genes). Next, we randomly selected a pathway meeting these

requirements at each of the six sample sizes. Table 2 displays the selected pathways and five-number summary

statistics for the
G
2

� �
inter-gene correlations within each. We note from the summary data that these pathways

exhibit a broad range of inter-gene correlations, centered at or near zero and often with a slight positive skew.
Indeed, every correlation matrix R for the six pathways departs significantly from a diagonal matrix: using a
nonparametric sphericity test from Chen et al.,29 none of the six corresponding (pointwise) p-values from the test is
larger than 10�6. Thus, we feel confident that each chosen pathway exhibits non-trivial inter-gene correlation.
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Table 2 also contains a column reporting the number of separate clusters, m, for each pathway determined by
our correlation clustering algorithm from Section 2.2. Not surprisingly, the number of clusters is low for small
pathway sizes and increases as G grows very large. We give the complete list of gene cluster assignments in a

supplementary document: see Supplemental Table S1. Supplemental Figure S1 also gives histograms for each set

of
G
2

� �
correlations.

To model gene expression in the gth gene in any of the six selected pathways ð g ¼ 1, . . . ,GÞ, we followed
established practice30,31 and assumed a negative binomial (NB) distribution for the frequency of reads, Yg, with
mean expression �g and dispersion parameter �g such that Var½Yg� ¼ �g þ �g�

2
g. To determine rough estimates of

both parameters for each gth gene, we returned to the TCGABRCAdatabase and retrieved RNA-seq read counts on
normal breast tissue samples from the same 110 independent patients. For each gene in the specified pathways from
Table 2, we found corresponding estimates �̂g and �̂g via the method of moments. (If �̂g indicated under-dispersion
compared to a Poisson random variable, we conservatively deemed the gene’s read count to be Poisson distributed
with mean �̂g.) These values defined the NB distribution for Baseline responses of gene g in our simulations.

To generate the corresponding, affected, Case responses in gene g, we imposed a  -fold increase in its mean
response and assigned that gene a differentially expressed mean of  �̂g. We varied this fold-change over the range
 ¼ 1:5, 2, 4. We combined the fold-change setting with a ‘‘DEG proportion’’ setting in order to study how
changes in a pathway’s differential expression are identified by our proposed methodology. That is, we allowed
the proportion of DEGs in a pathway to vary over the range �¼ 0,0.3,0.6,0.9. When �¼ 0, no DEGs were present,
and both the Baseline and Case mean responses were taken as �̂g. This studied the false-positive error rate of our
cluster-based test procedure. When �4 0, however, that proportion of the G genes in the pathway was assigned a
differential mean response equal to  �̂g, as described above. (We rounded �G to the nearest integer.) This latter
case was designed to study the power, our test procedure exhibits to identify DEPs.

Lastly, we studied the effects of inter-gene dependence by manipulating the inter-gene correlations. This was
quantified by a within-pathway correlation matrix R consisting of all pairwise correlations rih between genes gi and
gh in the given pathway. We used the externally determined correlations calculated from the TCGA database
(summarized in Table 2) and constructed a G� G R matrix for the pathway’s G genes using the corresponding rih
values. For each pathway, we considered three forms for the correlation structure:

(i) Cluster-correlated data that imposes the AP cluster assignments from Section 2.2, such that pairs of genes
within each cluster receive their corresponding correlation of rih from the full set of pairwise correlations, and
genes between clusters (within a pathway) receive a correlation of zero. This is intended to reproduce the
clustered correlation structure assumed by our testing methodology. We refer to this as ‘‘block’’ correlation,
since R takes on a block-diagonal form.

(ii) Cluster-correlated data where gene pairings receive their corresponding correlations of rih irrespective of their
imposed, within-pathway, cluster assignments. This is intended to study our method’s robustness when the
cluster assignments are not correctly specified. We refer to this as the ‘‘all’’ correlation case.

(iii) An ‘‘independence’’ assumption among all genes, such that R equals the G�G identity matrix I. This studies
the operating characteristics of our method under the supposition of no within-pathway correlation.

Table 2. Description of the six pathways selected for our simulation study.

Gene set identifier Description G m rmin rQ1 rQ2 �r rQ3 rmax

GO:0060350 Endochondral bone morphogenesis 15 2 �0.66 �0.14 �0.02 0.0030 0.120 0.60

GO:0016925 Protein sumoylation 30 6 �0.75 �0.18 �0.00 0.0269 0.259 0.89

GO:0048565 Digestive tract development 50 4 �0.73 �0.15 �0.01 0.0175 0.174 0.87

GO:0045185 Maintenance of protein location 100 9 �0.81 �0.20 0.00 0.0179 0.228 0.95

GO:0002683 Negative regulation of immune

system process

200 12 �0.79 �0.12 0.00 0.0310 0.169 0.99

GO:0002520 Immune system development 400 28 �0.86 �0.14 0.00 0.0220 0.172 0.98

Note: G is the total number of genes for which the TCGA BRCA data have measurements for each pathway; m is the number of clusters in each

particular pathway determined by the correlation clustering algorithm (see text). The remaining columns contain the five-number summary and mean

for the inter-gene correlations, r, observed in TCGA BRCA normal tissue RNA-seq data on an available sample of 110 patients.
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Correlated RNA-seq gene expressions were then simulated under our negative binomial model using the
correlations in R. The negative binomial read counts were simulated via R‘s rnbinom pseudo-random variate
generator. We employed copulas32,33 in order to ‘tie’ together the marginal negative binomial distributions and
form a multivariate construction. We found that a few simulation replicates could result in poor performance in
the implementation33 if generated serially, so we conducted all the simulations at once. We set the number of
replicate, simulated, N-of-1 data sets to 2000, and first generated an entire non-DEG simulated data collection of
size G� 2000. Next, an entire DEG simulated data collection of size G� 2000 was generated with every marginal
gene mean � multiplied by the current fold change  . The two data collections were merged based on the selected
DEG genes (see above) to form the complete simulated data set for the particular configuration with the
appropriate proportion of DEGs, �. This ensured that the desired correlation structures were properly
represented.

Combining the six different pathway sizes with three types of fold change, four different proportions of
DEGs/pathways, and three different correlation structures produced 216 separate simulation configurations for
study. (When �¼ 0 the value of  is irrelevant, but for completeness’ sake, we ran separate simulations at
each value of  ¼ 1:5, 2, 4 even for �¼ 0. We expect the results to show essentially similar performance in all
three cases.) At each configuration, the simulated N-of-1 samples represented paired pseudo-random NB
read counts YBg � NBð�̂g, �̂gÞ and YCg � NBð �̂g, �̂gÞ for the specified pathway of size G. To impose R, we
used a standard Gaussian copula given the clustering solution for the specified pathway (Supplemental
Table S1) and the simulation correlation setting (‘‘block’’, ‘‘all’’, or ‘‘independent’’). Then we transformed
the individual NB counts, Y, to the stabilized values X ¼ log2ðYþ 1Þ. Lastly, we tested for differential
expression using the AP-based clustered-T statistic in equation (7). For comparison purposes, we also
applied the Wilcoxon signed-rank test and the naı̈ve t-test discussed in Section 1.3 to assess their operating
performances.

For each test statistic, we set our pointwise false-positive rate to � ¼ 0:05 and recorded the proportion of cases
where the test rejected the null hypothesis of no differential gene expression. Notice that with 2000 simulations per
configuration, the approximate standard error of our empirical Monte Carlo rejection rates at the nominal 5%
level is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:05Þð0:95Þ=2000

p
¼ 0:005 and it never exceeds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5Þð0:5Þ=2000

p
¼ 0:011.

3.2 Simulation results

3.2.1 False-positive rates

Empirical false-positive error rates corresponding to �¼ 0 from our simulations are graphed in Figure 1. The
figure presents results for  ¼ 1:5 at � ¼ 0:05. We note that results with  ¼ 2, 4 were essentially similar, as was
expected. The display cross-classifies the results by correlation structure R and pathway size G. We see that for the
independence case (R ¼ I; far left column of graphs), all three methods control error rates at or slightly below the
nominal 5% level within Monte Carlo sampling variability. Since we argue that genes within pathways should not
be assumed independent, however, results from this independence case are primarily valid only as a proof of
concept.

For the more practical case with non-zero inter-gene correlations, Figure 1 (right two columns) shows that
our cluster-based approach using equation (7) exhibits reasonable false-positive error performance. Under the
cluster-correlated (‘‘block’’) structure for which it is designed, its empirical error rates are essentially at or
slightly below the nominal rate for all pathway sizes. Interestingly, under the ‘‘all’’ correlation structure, our
cluster-based test also shows good performance, either maintaining the nominal false-positive rate or becoming
slightly conservative. We view this as a form of robustness to misspecified clustering, at least of the form we
impose in our ‘‘all’’ correlation setting. The feature might be explained by the propensity of positively correlated
genes to cluster together in the clustering algorithm (Section 2.2), which would tend to drive inter-cluster
correlations to be negative (depending on the assumed correlation distribution) rather than close to zero.
This could then lead to over-estimation of the standard errors and produce slight drops in sensitivity in the
test statistic.

By contrast, both the signed-rank and naı̈ve t-test exhibit substandard false-positive error performance when
the data incorporate either form of inter-gene correlation. Error rates run upwards of 60% in some cases, although
for the G¼ 15 pathway under the all-correlation structure, all methods appear to control false-positive error. This
may be due to that pathway’s relatively symmetric and tighter pattern of inter-gene correlations (see Table 2).
The result is not reproduced with the block correlation structure, however, so we do not place much value in this
indication.

8 Statistical Methods in Medical Research 0(0)



3.2.2 Simulated power

Empirical powers, as rejection rates, from our simulations are graphed in Figure 2. The figure presents the results
as a function of the DEG proportion � and stratifies power curves by the fold change parameter  . (To provide a
baseline, the figure also includes the false-positive results at �¼ 0.) As in Figure 1, the display cross-classifies the
results by correlation structure R and pathway size G, and the nominal significance level was again set to � ¼ 0:05.
Only results for our AP-based clustered-T statistic in equation (7) are presented, since the other, independence-
based methods were seen in Figure 1 to be substandard.

The patterns in Figure 2 show a trend towards increasing power with increasing DEG proportion � (i.e. greater
departure fromH0). The effect is more pronounced as the fold-change increases from  ¼ 1:5 (dot-dashes) to  ¼ 4
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Figure 1. Empirical false-positive rates (dots) based on 2000 simulated N-of-1-pathways data sets for three competing testing

procedures (lower horizontal axis: Clustered-T¼ proposed test, naı̈ve t¼ standard t test, Wilcoxon¼ signed-rank test), cross-

classified by correlation structure (top: Independent¼ uncorrelated mRNA expression, Block¼ cluster-correlated expression,

All¼ unconstrained inter-gene correlation) and pathway size G (left). The corresponding cluster numbers, m, for each pathway are also

listed; see Table 2. Nominal significance level is set to � ¼ 0:05 (dotted horizontal lines). Results reported for  ¼ 1:5 (see text).

Horizontal bars are pointwise 95% Agresti–Coull34 confidence intervals for the underlying false-positive rate based on each set of

2000 simulated samples.
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(solid lines). Also, faster rises in power are indicated for the independence case (R ¼ I; far left column of graphs).
In all instances, these phenomena are not unexpected. Interestingly, for the smallest pathway at G¼ 15, the curves
were all visibly dampened and exhibited limited power. We attribute this more to the small number of clusters
(m¼ 2) than to the small pathway size, since the cluster-based t-test then operates with only m� 1 ¼ 1 d.f. The two
features are related, of course, since it is difficult to generate a large number of clusters with only 15 separate genes.
Indeed, for the larger pathways with G � 100, the power curves rise far more dramatically; less so for the smaller
pathways with fewer clusters. Supplementary Tables S2 to S3 contain full numeric summaries of the rejection rates
associated with this simulation study.

In general, these results suggest that the AP-based clustered-T statistic in equation (7) exhibits good false-
positive error control and reasonable power, at least under the settings chosen for these simulations.

4 Breast cancer example revisited

To illustrate use of our cluster-based methodology, we return to the breast cancer example from Section 1.2. Recall
therein that a female patient exhibiting triple negative breast cancer (TNBC) provided matched samples from both
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Figure 2. Empirical rejection probabilities (‘‘power’’) for the AP-based cluster approach using equation (7), based on 2000 simulated
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classified by correlation structure (top: Independent¼ uncorrelated mRNA expression, Block¼ cluster-correlated expression,

All¼ unconstrained inter-gene correlation) and pathway size G (left). The corresponding cluster numbers, m, for each pathway are also

listed; see Table 2. Simulated fold change is indicated by line styling:  ¼ 4 (solid lines),  ¼ 2 (dashes), and  ¼ 1:5 (dot-dashes).

Nominal significance level is set to � ¼ 0:05. Horizontal bars are pointwise 95% Agresti–Coull34 confidence intervals for the

underlying rejection rate based on each set of 2000 simulated samples.
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her healthy breast tissue and her cancerous breast tissue. (The complete data for this patient—identifiable only as
‘‘TCGA-A7-A0CE’’—were quarried from the Cancer Genome Atlas/TGCA.)

Our goal is not to present a comprehensive investigation for further medical treatment(s) with this particular
patient, rather, simply to exhibit how our cluster-based statistics are calculated in practice and to suggest
possible avenues for their further use. To start, gene expressions on all available genes for the patient
were normalized to account for library size (via transcripts per million) and then transformed via
log2ð yg þ 1Þ for each gth gene’s expression count yg in both the Baseline (normal tissue) and Case (cancerous
tissue) groups. As above, we defined our pathways from a standard gene set knowledgebase, chosen here to be
the GO-BP ontology.9 Recall that example data from one such pathway, GO:0003071 (renal system process
involved in regulation of systemic arterial blood pressure), were presented in Table 1. To make the process
manageable and results more interpretable, we retained the pathways that had no fewer than 15 and no more
than 500 genes annotated and provided a measured RNA-seq data set. This produced 3411 different GO-BP
pathways.

4.1 Clustering of gene ontology-biological processes pathways

To construct our inter-gene, correlation-based clusters to correspond with this patient’s TNBC data, we returned
to the same 110 independent, external subjects (these excluded TCGA-A7-A0CE’s expression data) in the TGCA
BRCA database employed in our simulation study (Section 3.1). Gene expressions in normal breast tissue from
these women were available across the same genes listed in the 3411 pathways chosen above. Within each of these
pathways, inter-gene correlations rih for the expressions were calculated from the 110 samples. We verified that
each pathway’s associated correlation matrix represented non-trivial inter-gene correlation, using the sphericity
test from Chen et al.29 Only four of the 3411 pathways yielded p-values above 0.05. Since this was such a small
number, we chose not to distinguish these four pathways from the rest. We next assigned within-pathway gene
clusters to all pathways via our AP clustering algorithm as described in Section 2.2, using the calculated
correlations rih.

The external clustering proceeded in a manageable fashion. Employing R without parallelization, the algorithm
processed all pathways in slightly under 30min on a MacBook Pro carrying a 2.5GHz Intel Core i7 processor and
16 GB of 1600MHz DDR3 RAM. Note that the external clustering need to be completed only once for a given
ontology and biological context/target tissue.

Most pathways yielded numbers of clusters m from the high single-digits to upwards of 30. For five of the
pathways, however, we did experience an anomaly: the algorithm converged to a solution with m equal to 1. (That
is, it assigned all genes in the pathway into a single cluster.) Since our AP-based clustered-T statistic in equation (7)
requires at least m¼ 2 clusters to operate, single-cluster pathways cannot be assessed with our method. Thus, we
chose to remove these five pathways from consideration and not report a p-value. (One might instead manually
inspect each single-cluster pathway and reason out some other, plausible, m � 2 clustering assignment. This would
require additional, subjective, domain-specific judgment on a case-by-case basis, however.) The five-number
summary for m across the remaining 3406 scored pathways was {2, 3, 5, 9, 41} with the average cluster
number equaling 6.97. The distribution was strongly skewed to the right.

4.2 Differentially expressed pathways for patient TCGA-A7-A0CE

Conditional on the external cluster assignments, we calculated our AP-based clustered-T statistic from equation
(7) and found its pointwise, two-sided p-value, corresponding to a tðm� 1Þ reference distribution, for each of the
scored pathways (including the four pathways exhibiting no inter-gene correlation). Pathways could be classified
as either differentially expressed (DEP) or non-dysregulated, depending on whether the null hypothesis was
rejected or not, respectively. One goal of the N-of-1-pathways strategy is to use such information to isolate
possible pathways that affect or associate with the patient’s disease outcome, i.e. here with TNBC. For
example, a non-dysregulated pathway that is a target of a therapeutic drug could be indicative of a patient’s
poor response to therapy.

For patient TCGA-A7-A0CE, 601 of her scored pathways gave a pointwise, unadjusted p-value at or below
5%. To correct for multiplicity, we further applied a Benjamini–Hochberg15 false-discovery adjustment. This
resulted in 80 DEPs with a false discovery rate (FDR) less than 15%. (Among these was included the
GO:0003071 pathway in Table 1.) Table 3 displays the 10 top-identified dysregulated pathways, ordered by
their original, cluster-based p-values. Supplemental Table S4 lists all these 80 DEPs.

Schissler et al. 11



Further study of patient TCGA-A7-A0CE’s, 80 DEPs may offer insights into disease pathogenesis, progression,
and possible therapeutic targets. For example, the dysregulated molecular pathways identified in in Table 3 are
known to be associated with breast cancer progression, including cell adhesion,35 signal transduction,36 NF-	B,37

and Toll-like receptors.38,39 The latter (Toll-like receptor) has particularly promising immunotherapy potential.40

5 Discussion

We have introduced a method for scoring and testing differentially expressed pathways (DEPs) from a single-
subject, matched-pair collection of gene expression data under the N-of-1-pathways paradigm.6 By focusing on
gene sets/pathways, this N-of-1 strategy provides a powerful tool for development of subject-specific precision
medicine. Unfortunately, the limited amount of data within the N-of-1, single-subject setting makes construction
of suitable statistical inferences difficult. In particular, we illustrated that the presence of inter-gene correlation
within a pathway undermines the ability of standard paired-testing methods to control false-positive error. We
argue instead for incorporation of external information into the significance test procedure. Toward this end, we
propose a novel correlation-based clustering algorithm that employs external gene expression data to aggregate
positively co-expressed genes into clusters within pathways. To our knowledge, this is the first single-subject gene
set testing procedure that accounts for inter-gene correlation.

In a short simulation study, the method exhibited satisfactory false-positive error control and robustness
against certain modeling assumptions, including the form of inter-cluster correlation. The method also
powerfully detected DEPs when the number of clusters and fold-change of differentially expressed genes
(DEGs) was large. In addition, it is worth mentioning that our cluster-based approach does not require
estimation of inter-gene correlations for the single N-of-1 subject being studied, as we show in an example with
a TNBC patient.

While the method presents ample potential, there are, of course, some caveats. One potential drawback is the
availability of external, context-relevant, gene expression data. In the cancer literature, there are a growing number
of openly available patient data sets and cell lines that could be recruited for use. Other biomedical contexts may
prove less accommodating, however. Furthermore, we implicitly assume that co-expression of genes within the
same tissue is stable across the external database, but further study is warranted to test the validity of this
supposition. Depending on the estimated, external, inter-gene correlations and the chosen gene set ontology,
some pathways may exhibit resistance to accurate and effective clustering. This could result in small cluster
numbers or large, positive, inter-cluster correlation, and potentially lower power under our cluster-based strategy.

5.1 Extensions

With the above limitations in mind, one might consider a number of possible extensions and variations to our
cluster-based approach. We propose what is, in effect, a self-contained gene set test,41 meaning that only genes in
the pathway impact the score. A test that employs inter-gene correlations across the entire transcriptome could
present a competitive alternative approach when many pathways fail to cluster under a chosen ontology. Indeed,

Table 3. The 10 top-hit (smallest p-value) differentially expressed pathways and corresponding summary statistics for TNBC patient

TCGA-A7-A0CE, after application of the AP-based clustered-T procedure.

Gene set identifier Description
��D T-statistic p G m

GO:0045785 Positive regulation of cell adhesion �0.75 �4.92 0.00011 226 19

GO:0032101 Regulation of response to external stimulus �0.47 �4.42 0.00015 458 28

GO:0070124 Mitochondrial translational initiation 0.28 7.55 0.00028 84 7

GO:0010769 regulation of cell morphogenesis involved in differentiation �0.51 �4.80 0.00028 168 15

GO:0030155 Regulation of cell adhesion �0.51 �4.24 0.00037 384 22

GO:1902532 Negative regulation of intracellular signal transduction �0.42 �4.37 0.00042 283 18

GO:0009306 Protein secretion �0.65 �4.68 0.00043 272 14

GO:0034142 Toll-like receptor 4 signaling pathway �0.33 �5.35 0.00046 105 10

GO:0051223 Regulation of protein transport �0.56 �3.94 0.00047 452 30

GO:0051092 Positive regulation of NF-kappaB transcription factor activity �0.54 �5.06 0.00049 111 11

Note: See text for details.
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correlation-based clustering is an active area of research across many disciplines.42 And, as noted above, future N-
of-1 data may present more than two conditions beyond our Case-vs.-Baseline pairing. The statistical details for
identifying DEPs under multiple conditions would make for an interesting extension of our cluster-based
approach.

It is also natural when considering incorporation of external information to consider some form of Bayesian
methodology.43 The nature and form of any such model would be highly complex, and it is unclear how much
external information or subjective input would be required to implement any eventual construct. Still, the richness
of the Bayesian paradigm offers many avenues for study and it may provide a useful arena for development with
N-of-1, precision-medicine inferences.

5.2 Choice of clustering algorithm

As a referee has noted, selection of the core clustering algorithm in Section 2.2 is a fundamental linchpin for
creating our external gene clusters and implementing the test statistic in equation (7). While we recommend the use
of AP clustering, many other algorithms could be applied in its place44 and whether any of these would provide
enhanced (or inferior) performance over AP is an open question. Indeed, one would expect results from any
reasonable alternative clustering procedure to be at least roughly comparable to those from AP if the clustering
pattern is sufficiently strong.

To examine this aspect, we considered an alternative clustering algorithm from one of the more important
classes of affinity-based clustering strategies, spectral clustering, see von Luxburg45 for an instructive introduction.
We applied von Luxburg ‘s recommended settings to the spectral clustering (SC) implementation from the kknn
package46 in R. Then, we simply replaced our calls to the apcluster package, and associated support coding, with
calls to the kknn specClust function in our R code. We also chose to employ eigengap heuristics specific for the
SC approach to select the number of clusters, m, in place of the pseudo-F statistic applied with AP’s q input
preference parameter. These heuristics find m as that number of clusters with a maximal difference (or ‘gap’)
between adjoining-ordered eigenvalues of the data’s graph Laplacian, see von Luxburg45 for complete details.
Lastly, we restricted the algorithm to require, as above, nj � 4 8j.

To study the performance of this alternative SC algorithm, we returned to our Monte Carlo evaluations from
Section 3. We implemented spectral clustering to redefine the clusters used for constructing the statistic in equation
(7) and then applied the procedure at the various parameter configurations and other input settings described in
Section 3.1. We recorded the instances of significant pathways identified by the corresponding test. The resulting,
empirical, false-positive rates at � ¼ 0:05 were generally satisfactory: the average false-positive rate for spectral
clustering was 0.0347 across all simulation conditions. By comparison, from Figure 1, the average was 0.0351 for
AP clustering. (The complete false-positive results appear in Supplemental Table S2, reference to which
corroborates that the SC error rates are comparable to those from AP clustering.) In the corresponding power
simulations, AP clustering yielded greater power for some settings, while for others, SC was more powerful with
similar performance in the aggregate. A graphic illustrating this similarity is given as Supplemental Figure S2,
displayed are the power curves under spectral clustering and those under AP clustering from Figure 2. It is seen
that both algorithms perform well as G grows, and that both AP and SC appear to operate in a similar fashion, at
least for the limited simulation settings we consider.

To study the effect of clustering-algorithm choice in practice, we returned to the TNBC data from Section 4 and
applied spectral clustering as described above in place of AP to define the gene clusters. After application of the
clustered-T statistic from equation (7), this produced an alterative ordered list of p-values and corresponding
pathways, the results from which indicated reasonably strong similarities between the two clustering algorithms.
For example, among the 3351 pathways that produced p-values under both methods—see below—the top-
identified dysregulated pathway using AP clustering, positive regulation of cell adhesion (GO:0045785), was
also top ranked under SC. At a broader level, 2870 of the 3351 pathways indicated qualitative agreement at
the traditional 5% level: 361 give both pAP and pSC below 0.05, while 2509 show pAP and pSC above 0.05.

Digging deeper, however, it is possible to identify important, information-based, genetic overlap between some
of the remaining 481 pathways whose p-values remained discordant. To do so, we turned to the concept of
information-theoretic similarity (ITS). Briefly, ITS quantifies the degree of semantic similarity between two
candidate pathways by comparing the information content encoded in the ontology structure based on the
mechanisms annotated to the genes comprising each pathway, see Tao et al.47 for details. The result is a
similarity score between 0 and 1: values closer to 1 indicate greater genetic similarity between the pathways.
Ongoing experience has shown that pairs of pathways with ITS scores above 0.7 exhibit high structural
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overlap,7,48 enough to label the pathways as ‘matches’ from an informatic perspective. (To provide a sense of the
rarity of obtaining an ITS match by chance alone, note that the proportion of all candidate GO-BP pairs whose
ITS exceed 0.7 is 35, 287=6, 056, 940 ¼ 0:00583.) We adopted this criterion and queried whether any discordant
pairs of pathways with p-values resting on either side of the 5% cutoff might still exhibit ITS matches.

Following the protocol developed by Gardeux et al.,7 we began by isolating all those pathways identified by AP
as significant at the 5% level—there are 601 such pathways for patient TCGA-A7-A0CE. Next, we isolated the
analogous list of pathways identified by SC as significant at the 5% level—there are 602 of these. Then we asked,
for a given pathway in the AP list do any pathways in the SC list possess an ITS score of 0.7 or higher to produce
an ITS match? If any SC pathway did so, we scored the pathway from the AP list as an ITS AP-SC match. If none
of the 602 SC pathways achieved the 0.7 threshold, then that AP pathway was recorded as a pure ‘‘no match’’
discord.

Collecting all this together produced four categorizations: (i) those where both pAP and pSC dropped below 0.05
(positive outcome ‘‘overlap,’’ with 361 pathways), (ii) those where both pAP and pSC exceeded 0.05 (negative
overlap, with 2509 pathways), (iii) those where only one p-value dropped below 0.05 but the pathway exhibited
information-theoretic similarity (‘‘ITS match,’’ with 396 pathways), and (iv) those where only one p-value dropped
below 0.05 and there was no ITS match (‘‘no match,’’ with 85 pathways). Clearly, the categorical similarity here is
strong, with only 85/3351 (2.5%) pathways showing no form of overlap or match. Moving to a different
significance level changes the counts, but not the mismatch pattern. Table 4 summarizes the results at the
popular 10%, 5%, and 1% levels.

Figure 3 visualizes the relationship at the 5% level by plotting the 3351 paired p-values, as � logfpg, from both
the algorithms. The figure distinguishes the four overlap groups via the plotting character: (i) dark gray dots for
positive overlaps, (ii) white dots for negative overlaps, (iii) light gray dots for ITS matches, and (iv) black dots for
no match. The pattern shows a clear progression along the 45� line of pure agreement, with a spread that widens
somewhat but then stabilizes as � logfpg grows. As expected, the two overlap groups lie in diagonal quadrants
along the 45� line to the lower left and upper right of the plot. Notably, the black-dot ‘‘no match’’ group
intermixes with the light-gray ITS-match group in the other quadrants of the display, with no otherwise-
remarkable pattern. On balance we see that the two clustering algorithms exhibit reasonable outcome
similarities when applied to this patient’s data, but that their p-values can nonetheless vary somewhat.

Going further with these data, the list of DEPs found via SC at FDR< 15% extended to 266 pathways; a
somewhat greater subset than the 80 found using AP clustering, but not a large percentage difference when
recalling that the full collection of pathways under consideration numbers 3351. Indeed, no matter the
underlying pattern, it is difficult to imagine that any two clustering-based, ordered lists of over 3300 pathways
would be identical. One could ask, however, how comparable do the orderings appear? A similar bioinformatic
question arises when comparing ordered gene lists, a useful quantification for which is described by Yang et al.49

They manipulate ranks of the ordered p-values to build a similarity score, weighted to emphasize greater overlap at
the top/most-dysregulated portion of both lists. (One could instead emphasize agreement at bottom, or at both top
and bottom, but a top-focused weighting seems most appropriate for our DEP application.) The orderings are
then permuted to produce an empirical p-value measuring how similar the two lists appear; small values indicate
strong overlap. For long lists such as ours, Monte Carlo permutation is recommended. A Bioconductor package,
OrderedList,50 facilitates the calculations.

We computed the Yang et al. overlap metric to compare the rankings of our two common-DEP lists, using
1,000,000 Monte Carlo permutations, and otherwise accepting default settings in OrderedList (aside from

Table 4. Categorization outcome agreement between spectral clustering and AP clustering in the clustered-T test of equation (7)

when applied to TNBC data from Section 4, as a function of chosen significance level.

Significance Positive Negative ITS No No match

Level (%) Overlaps Overlaps Matches Matches Percentage

10 684 2116 485 66 66
3351
¼ 1:97%

5 361 2509 396 85 85
3351
¼ 2:54%

1 88 3046 150 67 67
3351
¼ 2:00%

Note: Categories are: (i) positive overlaps (p-values both below significance level), (ii) negative overlaps (p-values both above significance level),

(iii) p-value discords with information-theoretic similarity (ITS) match (high informatic similarity), and (iv) p-value discords with no ITS match. See text

for details.
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changing the top-and-bottom weighting to top-weighted, as discussed above). This resulted in a top-weighted
overlap score of 25,706. Referenced to all permutations of the ranked lists, the empirical p-value was essentially
zero, suggesting a strong, top-weighted, dysregulation-identifying similarity between the two clustering algorithms
for these data.

We also recorded the patterns of cluster sizes, m, the two algorithms produced. Excluding cases with m¼ 1, the
average number of clusters per pathway was 6.97 for AP clustering and 6.32 for spectral clustering. The
corresponding five-number summaries were {2, 3, 5, 9, 41} for AP clustering (seen earlier), and {2, 3, 4, 8, 41}
for spectral clustering. Despite these further similarities, we noticed one complicating feature in our analysis: when
we permitted it, spectral clustering exhibited a greater tendency to produce clusters of size G—producing only
m¼ 1 cluster of genes within the affected pathway—more often than AP clustering. While AP clustering produced
five cases of m¼ 1 among the original 3411 pathways, spectral clustering gave 56. (There was one pathway where
both methods selected m¼ 1, hence the number of common scored pathways was 3351.) Once again, these are
trifling percentages when viewed in the context of 3351 scored pathways, but the 10-fold difference did attract our
attention.

More generally, while both algorithms yielded roughly similar patterns in the cluster sizes here, the potential
exists for them to produce different cluster solutions with a given historical data source. A particular pathway
therein may possess an affinity pattern which engenders several essentially-optimal clustering solutions and

Figure 3. Comparison of � logfpg values from spectral clustering (SC) vs. AP clustering in the clustered-T test of equation (7) when

applied to TNBC data from Section 4. Dot color indicates p-value overlap status: (i) dark gray dots for significant p-value overlaps

(both below 5% cutoff), (ii) white dots for insignificant p-value overlaps (both above 5% cutoff), (iii) light gray dots for p-value discords

with ITS match (high informatic similarity), and (iv) black dots for p-value discords with no ITS match. See text for details.
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assignments for m. Different clustering algorithms might settle on different choices for these cluster solutions,
which in turn could lead to very similar or very different test outcomes under our clustered-T strategy. When the
pathway’s cluster pattern is strong and a single optimal solution stands out, any differences should be minimal. In
cases where the pattern is more ambivalent, however, choosing a different cluster algorithm may affect the nature
of the final outcome.

Cluster algorithm selection is clearly a non-trivial component of our larger strategy and a need exists for more-
extensive study of it and of the larger clustered-T methodology. We are exploring all the various issues discussed
here and in Section 5.1 above, and we hope to report on them in future manuscripts.
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